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1. Final Synopsis

This project characterized stream temperature regimes in the Bristol Bay, Kodiak Island, Cook Inlet,

Copper River, and Prince William Sound regions to better understand thermal habitats for spawning and

juvenile salmon. We aggregated 1,691 summertime stream temperature time series from 420

monitoring locations across southwestern and southcentral Alaska and calculated a suite of metrics

related to the magnitude, frequency, duration, timing, and variability of stream temperatures. We

categorized streams into one of six different thermal regimes using metrics including temperature range,

stability, and timing. Thermal regimes represent a gradient of cold to warm habitats with Groups 1 and 6

experiencing the coldest temperatures, and 2, 3, 4, and 5 ranging from colder to warmest. Group 1 had

the latest timing of maximum stream temperatures and Group 6 had the most stable stream

temperatures. A comparison of stream thermal regimes among regions showed that cold habitats with

later timing of maximum temperatures, compared to other thermal regime types, were most common in

all regions and that cold stable habitats were most common in the Copper River and Prince William

Sound regions. However, all regions included all six thermal regimes described in our classification.

Thermal sensitivity measures how responsive water temperature is to air temperature, which can help

reveal the processes that govern stream temperature and how readily water temperature will be

affected by air temperature changes. We calculated stream thermal sensitivity (𝛕) across monitoring
sites. Estimated 𝛕 was highest in the Cook Inlet and Kodiak regions, followed by Bristol Bay and Copper

River, and was lowest in Prince William Sound. We modeled variation in 𝛕 using geomorphic, hydrologic,

climatic, and landcover covariates. The model was used to map thermal sensitivities across 1,597 salmon

streams for high and low scenarios of spring snowpack and summer precipitation. Thermal sensitivities

decreased under higher summertime precipitation but changed minimally between years with low and

high snowpack. The strongest control on 𝛕 was watershed slope, with a lower 𝛕 in streams draining

steeper watersheds. This result may be due to snowmelt contributions later in the summer period,



shorter water residence times, and deeper flowpaths that experience less solar radiation. Chum and pink

salmon habitats had the lowest 𝛕, followed by spawning habitats for all species, while rearing
habitats and Chinook, coho, and sockeye salmon habitats all had higher 𝛕. Thus, in a warming future,
salmon may face tradeoffs between physical habitat preferences for low gradient systems with
adaptations for cold water.

2. Project Activities and Results

Build a regional temperature database and summarize temperature metrics

associated with salmon life histories

We characterized stream thermal regimes as they relate to salmon life histories - specifically juvenile

rearing, spawning, and adult migration - using empirical stream temperature data from five regions of

southwestern and southcentral Alaska (Cook Inlet, Prince William Sound, Copper River, Bristol Bay, and

Kodiak). Stream thermal regimes included descriptors of the magnitude, frequency, duration, variability,

and timing of stream temperatures. We requested stream temperature datasets from data providers

identified through the Alaska Online Aquatic Temperature Site (AKOATS,

https://accs.uaa.alaska.edu/aquatic-ecology/akoats/). Data were received from state and federal

agencies, universities, local monitoring groups, and non-profit agencies working throughout the five

study regions. We reviewed all stream temperatures from the summer months for data quality and

anomalous or suspect data were flagged and excluded from further analysis. Temperature data

anomalies can occur when temperature loggers become exposed to air during low flows or buried by

sediment during floods. After reviewing all datasets, we developed a final dataset of daily minimum,

maximum, and mean temperatures for 470 stream temperature monitoring sites across multiple years

representing a total of 2,132 summer seasons, given that the number of years of data varied among

sites. For our analysis of stream thermal regimes, we further screened data sets and excluded time series

with less than 80% of days in the months from June, July, and August because missing data could bias

calculations of stream temperature metrics (e.g. miss the summer maximum). The final dataset that we

used to calculate our suite of temperature metrics included 420 sites and 1,691 summer seasons. The

final dataset included 230 sites in Cook Inlet, 20 in Prince William Sound, 26 in Copper River, 113 in

Bristol Bay, and 31 in Kodiak.

We calculated 37 initial metrics that represent stream thermal regimes based on previous work

examining thermal diversity in the Mat-Su Basin of Southcentral Alaska. Metrics describing the frequency

and duration of warm water events were associated with thresholds of 13°C and 18°C (e.g. number of

days greater than 18°C). The 13°C threshold protects habitats used for salmon spawning, and the 18°C
threshold is protective of salmon rearing habitats and migration corridors. To describe differences among

regions, we reduced the full list of metrics to a smaller subset of 11 non-redundant (pairwise correlations

less than 0.8) metrics (Table 1).

Table 1. List of 11 non-redundant stream temperature metrics used to explore differences in stream thermal regimes among five
study regions.

https://accs.uaa.alaska.edu/aquatic-ecology/akoats/


Group Metric Units

Magnitude MWMT, maximum weekly rolling average of daily
maximum temperatures

°C

Magnitude Average summer temperature °C

Magnitude Minimum of mean daily temperature °C

Frequency Number of days greater than 13°C Count

Frequency Number of days greater than 18°C Count

Duration Duration of longest event greater than 13°C Days

Duration Duration of longest event greater than 18°C Days

Variability Maximum daily range °C

Variability Variance of maximum daily temperatures °C2

Timing Timing of MWMT Julian day

Timing Timing of highest maximum daily temperature Julian day

Boxplots indicated broadly similar distributions of individual thermal metrics across the different study

regions (Figure 1). An abundance of outliers for the frequency and duration of events greater than 18°C
signifies that a small proportion of sites within each region are above this threshold for varying lengths

of time ranging from only days to most of the summer (Figure 1). Median values indicated that the

coldest sites and latest timing of maximum temperatures were in the Copper River and Prince William

Sound regions (Figure 1). Sites in the Prince William Sound region also had the lowest median value for

the maximum daily range suggesting that these monitoring sites were generally more stable than those

in other regions (Figure 1). Some sites had very large maximum daily ranges, especially in Bristol Bay.

Visual inspection of daily temperatures indicated these maximums occurred in early summer, possibly

due to low water in rainfed streams and minimal shade.

To examine differences in thermal regimes, we used principal components analysis (PCA). PCA is an

ordination method used to identify correlations among variables and reduce large multivariate datasets

into a smaller set of synthetic axes that represent important environmental gradients. We scaled the final

set of 11 metrics and used a correlation matrix for the PCA. The first two axes of the PCA explained 70%

of the variation in stream thermal regimes among the sites. Temperature metrics associated with

summer maximum and minimum temperatures as well as the frequency and duration of warm events

loaded positively on the first PC axis (Figure 2). Metrics related to the timing of maximum temperatures

loaded positively on the second axis, and the maximum daily range loaded negatively on the second axis,

indicating that these metrics were inversely related (e.g. streams with large daily ranges had earlier

timing of maximum temperatures, Figure 2). Variance of maximum daily temperatures loaded positively

on the first and second axes and was most closely correlated to sites that stayed warmer for longer

periods (e.g. high duration of longest events above 13 and 18°C, Figure 2). Ellipses representing the

different study regions had significant overlap, indicating that thermal regimes were broadly similar



among regions. Copper River and Prince William Sound were the only ellipses to include the top left

corner of the ordination, however, confirming our previous result that these regions include sites with

colder temperatures and later timing of maximum temperatures (Figure 2).

Figure 1. Boxplots showing distributions of 11 stream temperature metrics across five study regions: BB = Bristol Bay, CI = Cook
Inlet, CR = Copper River, K = Kodiak, PWS = Prince William Sound. See table 1 for temperature metric units. Points represent
outliers, with the box representing the interquartile range, and the thick horizontal line representing the median.



Figure 2. Principal Components Analysis ordination of 11 stream temperature metrics. Sites within regions are indicated by
colored ellipses. Arrows indicate stream temperature metric loadings onto the two principal components. The magnitude,
frequency, and duration metrics all load positively on the first axis, indicating that these variables are correlated. The timing
metrics loaded positively on the second axis.

Sites were classified into different thermal regimes following methods in Shaftel et al. (2020). The final

set of 11 temperature metrics were scaled and converted into a distance matrix using Euclidean

(straight-line) distances. We used hierarchical cluster analysis to sequentially merge sites or groups of

sites using Ward’s method, which minimizes the distance between each site and the centroid of its

group. We cut the final dendrogram (i.e. decision tree) at six groups because that solution included

stable cold-water habitats that provide important cold water refugia for salmon. Group 1 included the

most site-years (35% of total) that were generally cold and had the latest timing of maximum summer

temperatures (Figure 3 and Table 2). Groups 2 through 5 all had similar timing of maximum temperatures

and represented a gradient of stream thermal regimes from cold to warm (2 < 3 < 4 < 5, Figure 3 and

Table 2). Groups 4 and 5 had the most days greater than 18°C, indicating the presence of thermally

stressful habitats in the dataset (Figure 3 and Table 2). Group 6 represented the coldest and most stable

habitats with low variance and stream temperatures that rarely exceeded 13°C (Figure 3 and Table 2).

https://www.zotero.org/google-docs/?ojp2Bg


Figure 3. Differences in stream thermal regimes for six groups and 11 stream temperature metrics. See Table 1 for stream
temperature metric units. Points represent outliers, with the box representing the interquartile range, and the thick horizontal
line representing the median.

To compare the importance of different thermal regimes within each region, we calculated the

percentage of different thermal regimes present using the total number of summer stream temperature

time series for each region. Group 1 habitats were the most common across all regions, highlighting the

importance of high elevation snow, which drives colder stream temperatures and later timing of

maximum summer temperatures (Figure 4). Group 3 habitats were more common in Bristol Bay and

group 4 habitats were more common in Kodiak (Figure 4). The cold stable habitats represented by group

6 were most common in the Copper River and Prince William Sound regions (Figure 4). These results

confirm our previous analyses indicating a diversity of stream thermal regimes among regions in

southwestern and southcentral Alaska.



Table 2. Median values of four metrics describing important differences in six stream thermal regimes identified using
hierarchical cluster analysis. The number and percentage of site and year combinations in each thermal regime group are also
provided.

Thermal
Regime

Number of
Site-Years
(count)

MWMT
(°C)

Timing of
MWMT

(day of year)

Days Greater
Than 18°C
(count)

Variance
(°C2)

1 534 (35%) 11.9 214 (Aug. 1) 0 3.0

2 268 (17%) 14.7 196 (July 14) 0 3.0

3 380 (25%) 17.0 197 (July 15) 2 5.2

4 254 (16%) 18.8 197 (July 15) 11 4.9

5 49 (3%) 19.8 194 (July 12) 22 5.4

6 63 (4%) 8.0 185 (July 3) 0 1.1

Figure 4. Distribution of stream thermal regimes by region. Thermal regimes represent a gradient of cold to warm habitats from
6 < 1 < 2 < 3 < 4 < 5. Group 1 had the latest timing of maximum stream temperatures and group 6 had the most stable stream
temperatures.



Estimate thermal sensitivities of salmon streams to warming air temperatures and

declining snowpack

We followed methods in Cline et al. (2020) and used dynamic factor analysis (DFA) to calculate stream

temperature sensitivities for a subset of sites across the five study regions. Most of the data collection in

our study area began in 2008 or later (first year with greater than 50 monitoring sites). We selected 2011

to 2019 for our DFA modeling of stream thermal sensitivities, as those years consistently had

approximately 100 or more monitoring sites. Our final dataset included 1,224 complete (> 80% of days in

June, July, and August) summer stream temperature time series from 319 sites across all five study

regions. The number of years of complete summer stream temperature data ranged from one to nine,

and 60% of sites had three or more complete summers of data.

DFA models daily stream temperatures as a linear combination of an underlying regional trend,

explanatory variables, and observation or sampling errors. We developed two DFA models for the years

2011-2019. In both models, we included air temperature as a variable to explain patterns in annual

stream temperatures, which allows for the calculation of site-specific stream thermal sensitivities. In the

second model, we added site-specific daylength as a secondary variable to account for changes in the

duration of solar radiation that vary by latitude but not from year to year. Time series were z-scored

(subtract mean and divide by standard deviation) prior to input to the DFA. Site specific coefficients for

air temperature were back-transformed to generate raw stream temperature sensitivities (𝛕) expressed
as a °Cstream/°Cair.

Our final DFA models had a single trend, and we compared thermal sensitivities for models with and

without daylength. Maximum values for 𝛕 decreased when daylength was added as a secondary

covariate to the DFA model, although there was no shift in minimum values (Figure 5). Loadings on the

single trend in both models were similar, indicating that adding daylength explained variation in 𝛕 only

and not in annual trends. The estimated 𝛕 varied across regions, with the highest thermal sensitivities in

the Cook Inlet and Kodiak regions, followed by Copper River and Bristol Bay, while Prince William Sound

had much lower 𝛕 (Figure 6). We used 𝛕 values from the model that controlled for differences in

daylength to map stream thermal sensitivities. This method allowed us to explore 𝛕 that was strictly

associated with climate warming and not daylength, across salmon habitats in the region.

https://www.zotero.org/google-docs/?8C4rY0


Figure 5. Frequency distribution of the differences in stream thermal sensitivities in DFA models with daylength as a covariate.
Sensitivities decreased when daylength was added to the DFA model.

Figure 6. Frequency distribution of estimated stream thermal sensitivities across five regions used in the dynamic factor analysis
model. Median values are shown as text for each region. Sensitivities are from a model that included daylength.



Map temperature regimes and thermal sensitivities of salmon habitats and

identify habitats sensitive (i.e., more at risk) to climate warming, habitats with

high potential to provide cold-water refugia under future climate change, and an

assessment of the exposure of subsistence fisheries (i.e., populations) to

temperature warming

We modeled 𝛕 using covariates that represented important hydrologic, topographic, and climatic drivers,

then used the model to map 𝛕 across the study area in habitats that support Pacific salmon. To calculate

covariates at different hydrologically meaningful spatial scales, such as stream reaches (confluence to

confluence flowlines), catchments (the land area draining to a stream reach), and watersheds, we

required datasets that represent the flow of water across the landscape to streams. The U.S. Geological

Survey recently developed a high resolution National Hydrography Plus (NHD Plus) product for the Cook

Inlet and Copper River regions that includes the digital elevation models (DEM) used to generate the

vector stream network, catchments linked to each stream reach, and attributes that can be used to

navigate the stream network. We used a 10-meter composite DEM and TauDEM tools to construct

synthetic stream networks for the Prince William Sound, Bristol Bay, and Kodiak regions. The five-meter

digital elevation models from NHD Plus were resampled to 10 meters to match resolutions for processing

of topographic variables. Site locations were examined in a GIS to ensure they matched the sampled

stream as described by the data collectors or provided in the metadata. When necessary, sites were

shifted slightly to intersect the vector stream network being used for each region to generate accurate

stream reach, catchment, and watershed attributes.

Our approach relied on identifying correlations between 𝛕 and datasets that serve as proxies for

hydrologic and climatic controls. We included 13 predictors in our model after eliminating covariates that

had strong pairwise correlations or multicollinearity. Covariates with pairwise correlations greater than

0.7 and variance inflation factors greater than three were removed. The final list of predictors included

stream slope (%), mean catchment elevation (m), mean catchment slope (%), mean watershed slope (%),

percent of the watershed with a north aspect, watershed area (km2), percent of the watershed covered

by glaciers, lakes, or wetlands, spring snow index, total summer precipitation (mm), valley confinement

(measured as width in m), and region (Cook Inlet, Prince William Sound, Copper River, Bristol Bay, and

Kodiak).

We calculated the spring snow index (last day of the continuous snow season averaged across each

watershed) as an initial covariate representing snowpack processes that may buffer stream thermal

sensitivities using snow metrics derived from remote-sensing (Lindsay et al., 2015). At higher elevations

and in watersheds with steeper slopes, snow lingers longer into the summer season. We removed the

effect of watershed slope on snow by fitting a model to our spring snowpack covariate using mean

watershed slope as a covariate. We calculated the model residuals per methods in Cline et. al. (2020) as

an index of spring snow independent of watershed topography (hereafter referred to as the spring snow

index).

Valley confinement was calculated using the Valley Bottom Extraction Tool, which uses a stream

shapefile, DEM, drainage area, and user-defined thresholds to produce estimated valley widths. Valley

https://www.zotero.org/google-docs/?3GAWuV


confinement could influence the amount of solar gain in the channel and have implications for the

degree of groundwater influence on temperature in a given reach.

We used boosted regression trees to generate a predictive model of 𝛕 that could be used to map 𝛕
across a spatially balanced set of salmon streams across the study area. For the boosted regression tree

model, we used a tree complexity of five to allow for variable interactions, a slow learning rate of 0.005

to stabilize the prediction variance, and a bag fraction of 0.5 (only half of the observations are used in

each new tree) to reduce overfitting and improve prediction accuracy. A slow learning rate requires

additional trees to identify the best performing model and we used cross validation to determine the

total number of trees in the final model. We used 10-fold cross validation and generated models with

increasingly larger numbers of trees to identify the optimal number of trees with the lowest predictive

performance. Additionally, we dropped variables sequentially until the reduction in prediction

performance exceeded one standard error of the model with the variable retained. Once unnecessary

variables were identified, we recreated the optimal boosted regression tree model using cross-validation

to select the optimal number of trees. All analyses were run using the gbm.step and gbm.simplify

functions in the dismo package in R (Hijmans et al., 2023).

Our final boosted regression tree model for 𝛕 included six variables and explained 79% of the deviance in

the training data and 49% of the deviance in the withheld data used during cross-validation to select the

optimal number of trees (Figure 7). Plots of observed versus predicted values on testing data indicated a

small amount of bias towards over-predicting tau, but a good model fit (Figure 7). Variable importance

calculations were based on the number of times a variable appears in a split, weighted by the increase in

model performance, and averaged over all trees. The most important variables in the model in order of

decreasing importance were mean watershed slope (relative importance = 24), watershed size (17), total

summer precipitation (16), lake cover (16), mean catchment elevation (15), and the spring snow index

(13).

https://www.zotero.org/google-docs/?KswH3w


Figure 7. Observed stream thermal sensitivity and predicted thermal sensitivity from boosted regression tree model. Predictions
are based on withheld data during cross-validation and represent prediction accuracy to new streams not included in the
training dataset for the model. The linear fit between the observations and predictions indicate bias towards overprediction of
thermal sensitivity in the model and the R2 indicates the model explains approximately half of the variation in observed stream
thermal sensitivities.

Overall, the model performed best in the Bristol Bay and Cook Inlet regions, and more poorly in the

Copper River, Kodiak, and Prince William Sound regions (Figure 8). This difference could be explained by

the higher number of sampling sites in Bristol Bay and Cook Inlet compared to the other three regions.

More stream temperature data collection could allow for better refinement of these predictive thermal

sensitivity models for those regions .



Figure 8. Observed stream thermal sensitivity and predicted thermal sensitivity from boosted regression tree model by region.
Predictions are based on withheld data during cross-validation and represent prediction accuracy to new streams not included in
the training dataset for the model. The model performs relatively well in Bristol Bay and Cook Inlet, as indicated by the R2 values
for those regions, but less well in Kodiak, Prince William Sound, and the Copper River watershed.

We selected 1,597 salmon streams across our study area to explore how 𝛕 varies under years of high and

low snowpack and for different salmon species and life stages. We selected stream reaches that drained

Level 12 hydrologic units (HU12), which is a spatial dataset of sub-watersheds generated by the U.S.

Geological Survey. The HU12 sub-watersheds are non-overlapping polygons that follow watershed

boundaries, but only represent true watersheds when they encompass a headwater stream. We further

filtered by stream reaches identified in the ADF&G Anadromous Waters Catalog as supporting salmon,

and linked species and life stage information to each stream reach. We generated the same thirteen

covariates used in our boosted regression tree model for all 1,597 salmon streams so we could predict 𝛕.
We calculated the spring snow index as before, but for all years from 2011 through 2019. This provided

us with a long term, consistent history of snowpack and precipitation variability across all streams.

For each salmon stream, we selected the year with the smallest and largest spring snow index and

summer precipitation totals, then predicted 𝛕 using our boosted regression tree. We mapped 𝛕 across

salmon streams using sub-watershed boundaries by the four different scenarios (high and low spring



snow index, high and low summer precipitation) and compared differences in 𝛕 by region. We also

explored relationships between stream habitats used by different salmon species or life stages and 𝛕,
which may indicate different levels of exposure.

The model predictions indicated that there was little change in mean 𝛕 across the five regions over

different scenarios of summer precipitation or spring snowpack (Figure 9). Salmon habitats in the Prince

William Sound and Kodiak regions had the lowest 𝛕 under all scenarios, followed by Cook Inlet and

Copper River, and Bristol Bay, which had the highest 𝛕 under all scenarios (Figure 9). Changes in 𝛕 under

the two precipitation scenarios were highest in salmon streams draining low elevation areas, such as the

west side of the Susitna River basin, the western Kenai Peninsula, and the lowlands of Bristol Bay (Figure

10). In summers with high precipitation, 𝛕 decreased, indicating that precipitation may be an important

hydrologic input to streamflow and may buffer streams from changes in air temperature.

The salmon habitats with the highest 𝛕 had low mean watershed slopes. This covariate was correlated

with elevation (r = 0.53), end of the snow season (r = 0.48), and wetland cover (r = -0.51). Together, these

geomorphic covariates and hydrologic inputs could all be driving changes in 𝛕. Steeper watersheds have

lower residence times, more snow, and fewer wetlands, indicating the availability of more cold-water

inputs that enter streams quickly and have less opportunity for atmospheric heating. Streams draining

flatter watersheds are generally lower elevation, have earlier snowmelt, and have an abundance of

wetlands, so unless deeper upwelling groundwater is present (group 6), there are less cold-water

contributions in the summer and more near-surface warming before water enters the streams.



Figure 9. Differences in mean stream thermal sensitivities by region and scenario. The error bars are +/- 1 standard deviation in
stream thermal sensitivities. The four scenarios are low and high spring snow and low and high summer precipitation. The
highest and lowest values were selected from 2011-2019 climate covariates for each of 966 salmon streams across the five
regions. The spring snow index is the last day of the snow season averaged over each watershed after removing the effect of
mean watershed slope. The precipitation value is the total summer precipitation at each stream reach summed from daily values
from June through August of each year.



Figure 10. Mapped stream thermal sensitivities for salmon streams in the Cook Inlet, Prince William Sound, and Copper River
regions. Thermal sensitivities changed the most from the low to high precipitation scenario, where streams draining low
elevation landscapes had lower thermal sensitivities in summers with high precipitation.

Across all four scenarios, we examined differences in mean 𝛕 among salmon habitats. Chinook, coho, and

sockeye salmon habitats had the highest mean 𝛕, which decreased under the high precipitation scenario

(Figure 11). These three species all have juveniles that spend a year or more in freshwater and are

therefore using habitats across a larger part of the stream network than pink or chum salmon. Spawning

habitats had slightly lower mean 𝛕 than rearing habitats and both habitats had decreased 𝛕 under higher

precipitation (Figure 11). Overall, our results indicate that habitats with the highest thermal sensitivities

were those draining flatter, low elevation watersheds with high wetland cover, which are the most

sensitive watersheds to warming. Salmon prefer to spawn and rear in low gradient habitats with high

floodplain connectivity and off channel habitats, but these types of settings have the highest 𝛕 and could

lead to tradeoffs in the future where salmon balance physical habitat preferences against adaptations for

cold water.



Figure 11. Differences in mean stream thermal sensitivities by scenario and salmon habitat. The error bars are +/- 1 standard
deviation in stream thermal sensitivities. The four scenarios are low and high spring snow and low and high summer
precipitation. Salmon habitats are attributes for each stream reach assigned from the ADF&G Anadromous Waters Catalog.
Species designations include all life stages and life stage designations include all species.
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3. Project Dissemination
Project results were presented at the Alaska Chapter of the American Fisheries Society meeting on

March 2, 2022. We have created a project entry on the Alaska Center for Conservation Science Data

Catalog: https://accscatalog.uaa.alaska.edu/dataset/stream-thermal-sensitivities, which will be updated

to include a copy of this completion report and a link to the project web mapper. We plan to publish

datasets generated as part of this project to Zenodo, a public data repository, and will include a link to

the DOI for the project on the Data Catalog entry when it is available. We are working to finalize a

manuscript with these results in a peer-reviewed journal.

4. Reports and Other Products
We created an ArcGIS online web mapper for this project (https://arcg.is/Xq1fn0) that can be used to

explore stream thermal sensitivities in salmon habitats across the Bristol Bay, Kodiak, Cook Inlet, Prince

William Sound, and Copper River regions. The mapper includes geospatial datasets of estimated stream

thermal sensitivities for stream temperature monitoring sites used in this project in addition to scenarios

of stream thermal sensitivities for 1,597 salmon streams in the five regions.

We plan to archive data created as part of this project on Zenodo, a public data repository. The datasets

we will archive include several .csv files:

1. Metadata for 420 stream temperature monitoring sites used in this project as a csv with latitude,

longitude, site name, and other information associated with the data collector.

2. Stream temperature metrics for all sites and years included in analysis of stream thermal

regimes.

3. Estimated stream thermal sensitivities and spatial covariates for 420 sites with data between

2011-2019. Spatial covariates were used in boosted regression tree models.

4. Scenarios of stream thermal sensitivities, spatial covariates, and species and life stage

information for 1,597 salmon streams across the Cook Inlet, Prince William Sound, and Copper

River regions. Four scenarios included low and high spring snowpack and low and high summer

precipitation.

https://accscatalog.uaa.alaska.edu/dataset/stream-thermal-sensitivities
https://arcg.is/Xq1fn0

